Big Bang
Parece incrível, mas num passado remotíssimo toda a matéria que observamos hoje no Universo - distribuída em 100 bilhões de galáxias, cada uma com mais de 100 bilhões de estrelas, dentre as quais o nosso modesto Sol - pode ter estado tão extraordinariamente concentrada que caberia até com folga na ponta de uma agulha.
Nesse mundo, além de toda imaginação, a densidade da matéria atingiria o valor de 1090 quilos por centímtro cúbico - um número que se escreve com o algarismo 1 seguido de noventa zeros. A densidade das rochas comuns existentes hoje na terra é de apenas alguns gramas por centímetro cúbico. O Universo, então, seria não apenas superdenso, mas também superquente: a temperatura atingiria o fantástico patamar de 1031 graus Kelvin - mais de um bilhão de bilhão de bilhão de vezes a temperatura média do Sol.Por mais inacreditáveis que estas cifras possam parecer, elas correspondem a uma teoria sobre a origem do Universo aceita em quase todos os meios científicos do mundo - a Teoria do Big Bang (Grande Explosão). De acordo com ela, o Universo teria se originado numa explosão apocalíptica entre 15 e 20 bilhões de anos atrás. A situação que descrevemos refere-se a um instante apenas 10 - 43 segundos após o Big Bang - o algarismo 1 precedido de 42 zeros depois da virgula, - chamado Tempo de Planck.
Embora separado do instante inicial por uma fração ínfima de segundo, o Tempo de Planck não se confunde com o momento do Big Bang, porque a matéria energia passou por mudanças dramáticas naqueles pedaços infinitesimais de tempo que se sucedera à origem. O Tempo de Plack constitui o limite até onde chegam atualmente nossos conhecimentos teóricos numa viagem regressiva rumo ao marco zero. A partir daí, ou melhor, antes disso é impossível de ser descrita nos termos dos conhecimentos atuais da Física. Podemos especular que, à medida que nos aproximamos ainda mais desse instante inicial, chamado de estado de singularidade pelos cientistas, o volume do Universo tende a zero enquanto a densidade e a temperatura tendem ao infinito.
A Teoria do Big Bang é uma das mais belas realizações intelectuais do século. Para o seu desenvolvimento contribuíram dois ramos do conhecimento que, há apenas algumas décadas pareciam muito distantes: a ciência do macrocosmo, o infinitamente grande, e a ciência do microcosmo, o infinitamente pequeno. A Cosmologia e a Astrofísica, por uma lado, e a Física das partículas elementares ou Física subatômica, por outro. Curiosamente, os pais fundadores do Big Bang não eram nem astrônomos nem físicos de partículas. Um deles, Alexander Friedmann (1888-1925), era um meteorologista e matemático russo; o outro, o abade Georges Lemaitre (1894-1966), era um padre e matemático belga.
Trabalhando cada qual por seu lado, como tantas vezes acontece na ciência, Friedmann e Lemaitre chegaram a conclusões muito semelhantes a partir de um desenvolvimento puramente matemático da Teoria Geral da Relatividade de Albert Einstein Einstein acreditava que a atração gravitacional entre os corpos decorria de uma curvatura do espaço-tempo provocada pela presença da matéria. Friedmann e Lemaitre partiram das complicadas equações de campo gravitacional de Einstein e, como ele, adotaram a hipótese de um Universo, homogêneo no espaço.Mas, ousadamente, descartaram a idéia de Eisntein de um Universo imutável no tempo. Isso lhes permitiu chegar, entre 1922 e 1927, a um conjunto de soluções simples para as equações. O Universo que essas soluções descreviam estava em expansão em todas as direções com as galáxias se afastando umas das outras. Essa expansão teria se originado a partir da singularidade , um ponto matemático de densidade infinita.
Em 1929, o astrônomo norte-americano Edwin Hubble (1189- 1953) fez uma descoberta sensacional que trouxe a primeira prova a favor da tese da Grande Explosão. Com o gigantesco telescópio do observatório do monte Wilson, na Califórnia, Hubble descobriu que o espectro da luz proveniente das galáxias distantes apresentava um red-shift - desvio para o vermelho - e que esse desvio era tanto maior quanto mais distante estivesse a galáxia, observada em relação à nossa própria galáxia, a Via Láctea. A explicação de Hubble era de que este fenômeno se devia ao efeito Dopler, bastante conhecido pelos físicos desde o século passado.
A conclusão ficava evidente. Se a luz desviava para o vermelho era porque essas galáxias estavam se afastando de nós, e se esse desvio era tanto maior quanto mais longe estivesse a galáxia, isso significava que a velocidade de afastamento crescia com a distância. Para um astrônomo situado numa galáxia distante, também a luz emitida pela Via Láctea apresentaria um desvio para o vermelho. Pois é o Universo como um todo que está em expansão.Ora, se tudo está se afastando no Universo, é possível imaginar uma época remotíssima em que tudo estivesse extremamente próximo. Essa seria a época do Big Bang. Quando isso pode ter ocorrido? O termo que relaciona a velocidade de afastamento ou recessão das galáxias com a distância é conhecido como constante de Hubble. O tempo desde o início da expansão, calculado a partir da constante, dá algo entre 15 e 20 bilhões de anos.
A descoberta de Hubble trouxe um poderoso argumento a favor do Big Bang. Não foi, porém, um argumento conclusivo. Tanto assim que, no final dos anos 40, quem propusesse um modelo alternativo, a Teoria do Estado Estacionário. Em 1964, porém uma descoberta puramente acidental iria representar um golpe demolidor nesse modelo rival.
Dois radiastrônomos, o germano-americano Arno Penzias e o norte-americano Robert Wilson. trabalhando com uma gigantesca antena de sete metros da Bell Telephone dos Estados Unidos descobriram um fraquíssimo ruido de rádio que vinha de todas as direções do céu ao mesmo tempo. Ao longo dos meses. embora 05 movimentos de rotação e translaçao da Terra voltassem a antena para todas as regiões do firmamento. o sinal mantinha sua intrigante regularidade.
Finalmente. Penzias e Wilson tomaram conhecimento de que na prestigiosa Universidade de Princeton um grupo de físicos liderados por Robert Dicke havia deduzido teoricamente a existência de uma fraquíssima radiação de fundo. que deveria preencher uniformemente o espaço. Seria uma espécie de resíduo fossil da superesc aldante sopa cósmica de matéria e energia que. pela Teoria do Big Bang. constituía o Universo pouco tempo depois da Grande Explosão. Com a expansão do Universo. a densidade da energia teria diminuído progressivamente. o que provocou um resfriamento - pelo mesmo motivo que um gás. ao se expandir. resfria —. até chegar a uma temperatura de aproximadamente três graus Kelvin. poupo acima do zero absoluto.
Em condições normais, o átomo é formado por três partículas elementares: próton, elétron e nêutron. Delas porém, talvez apenas o elétron possa ser considerado realmente elementar; o próton e o nêutron seriam constituídos de partículas ainda menores - os quarks.Se fosse possível empreender uma viagem de volta à origem do Universo, quando se chegasse a cerca de 300 mil anos depois do Big Bang, as temperaturas já seriam tão altas que romperiam as estruturas dos átomos, arrancando os elétrons de suas nuvens em torno dos núcleos atômicos. Ao se ultrapassar, nessa contagem regressiva, o terceiro minuto depois do Big Bang, os próprios núcleos começariam a se desintegrar, liderando os prótons e os nêutrons neles aprisionados. Na marca de um milionésimo de segundo depois do Big Bang, até os prótons e nêutrons seriam fragmentados nos quarks que os constituem.
Essa viagem de volta à origem termina por enquanto no Tempo de Planck, localizado, como vimos, apenas dez milionésimos de bilionésimo de bilionésimo de bilionésimo de bilionésimo de segundo depois do Big Bang. Os físicos especulam, porém, que, quando seu arsenal teórico permitir ultrapassar a barreira do Tempo de Planck, talvez se encontre um Universo de insuperável simplicidade. Toda a matéria se apresentaria sob a forma de um único tipo de partícula e as quatro forças existentes no mundo atual - a gravitacional, a eletromagnética, a nuclear forte e a nuclear fraca - estariam unificadas num mesmo tipo de força. A própria distinção entre partícula e força provavelmente não teria qualquer significado.Isso por ora é uma simples suposição. Mas a ciência tem dado passos concretos para verificar sua validade.
A unificação entre a força eletromagnética e nuclear fraca, proposta teoricamente nos anos 60 pelos norte-americanos Steven Weinberg e Sheldon Lee Glashow e pelo paquistanês Abdus Salam - os três ganhadores do prêmio Nobel de Física de 1979 - foi confirmada em 1983, com a descoberta das partículas que transportam a forca nuclear fraca, previstas pela teoria da unificação.
Essa descoberta, que deu ao italiano Carlo Rubbia 0 Nobel de Física de 1984, foi obtida no gigantesco acelerador de partículas da Organização Européia de Pesquisas Nucleares (CERN). localizada em Genebra. Suíça, e envolveu um nível de energia igual ao que poderia ser encontrado na Universo primitivo dez bilionésimos de segundo depois do Big Bang. Assim, a teoria e a experimentação vão nos aproximando cada vez mais da origem do Universo. Nessa escalada do conhecimento, o zero é o limite.
Estado Estacionário contra a Grande Explosão
Em 1948 três jovens cientistas da Universidade de Cambridge. Inglaterra o inglês Fred Hoyle e os judeus austriacos Hermann Bondi e Thomas Gold - iniciaram uma atrevida cruzada contra a Teoria do Big Bang. Sua arma era outra teoria, a do Estado Estacionário, que procurava a justar a evidência indiscutível do afastamento das galáxias, descoberto por Hubble. ao chamado Principio Cosmológico Perfeito. Este supõe um Universo infinito e homogêneo no espaço. eterno e imutável no tempo.
A idéia é a seguinte: se o Universo estava em expansão e entretanto se mantinha imutável. era porque nova matéria estava sendo continuamente criada para ocupar o espaço deixado vazio pela matéria que se afastava. Dessa forma a densidade média do Universo se manteria constante. Para isso, bastaria que fosse produzido um próton de massa para cada mil centímetros cúbicos de espaço a cada biIhão de anos - uma quantidade tão fantasticamente pequena que deveria escapar à mais acurada observação. No entanto. consideradas as dimensões do universo observável. essa mesma quantidade produziria a cada segundo nada menos de 10" toneladas de matéria ou I seguido de " zeros.
De onde viria essa matéria? "Do nada", responderam os cientistas A idéia soa absurda, não há dúvida Mas também a Teoria do Big Bang não diz de onde veio a matéria que deu origem ao Universo. Por isso, perguntava o físico Thomas Gold: "Será mais fácil admitir um único grande milagre do que vários pequenos milagres?" A Teoria do Estado Estacionário, para seus defensores, tinha pelo menos a vantagem de evitar a desconcertante singularidade de que fala o modelo do Big Bang.Segundo Fred Hoyle, que além de físico e astrônomo é renomado escritor de ficção científica, a própria criação continua de matéria provocaria a ininterrupta expansão do Universo, porque a matéria nova, ao surgir, produziria uma espécie de pressão para fora, capaz de empurrar a matéria já existente. Ademais, a hipótese da criação contínua conseguia explicar por que, num Universo supostamente eterno, o hidrogênio continuava a ser de longe o elemento mais comum.Como Hoyle estava convencido de que os elementos mais pesados decorriam da fusão do hidrogênio no interior das estrelas - no que a ciência posteriormente lhe daria razão—, era preciso que hidrogênio novo fosse criado continuamente para substituir o hidrogênio consumido nas fornalhas estelares. A década de 50 assistiu a um debate até hostil entre os partidários do Big Bang e os do Universo estacionário.
Os primeiros acabaram ganhando a parada com a descoberta de Penzias e Wilson da radiação de fundo das microondas cósmicas. Os outros foram vencidos, mas não ficaram convencidos.Pois as microondas descobertas por Penzias e Wilson correspondiam exatamente a um tipo de emissão de uma fonte a três graus Kelvin. O fato de a radiação ser recebida da mesma forma de todas as direções do espaço significava que ela provinha do Universo como um todo - era uma característica dele. Era a mais espetacular prova material a favor do Big Bang desde a recessão das galáxias de Hubble.A partir de então, a Teoria do Big Bang foi alimentada principalmente pela Física das partículas elementares que investiga as diminutas regiões do interior do átomo.
Esse fato parece paradoxal, mas é que, nas altíssimas temperaturas do Universo primitivo, a matéria estava desintegrada nas partículas elementares que a constituem. Pode-se ter uma idéia de como essa matéria se comportava utilizando os grandes aceleradores de partículas existentes nos principais centros de pesquisa do mundo. Neles. as partículas subatômicas são aceleradas até alcançar altíssimas velocidades e levadas a colidir umas com as outras; a partir dos resultados da colisão, é possível investigar sua natureza. Pouco depois do Big Bang, o Universo era um fantástico acelerador de partículas.
Efeitos de som e luz
Você talvez não saiba, mas, se alguma vez ficou esperando um trem na-plataforma de uma estação, já deve ter entrado em contato com o efeito Doppler. Ele se manifesta assim: o apito do trem parece mais agudo quando a locomotiva se aproxima do observador na estação e mais grave quando o trem dele se afasta; para o maquinista, porém o som parece sempre igual. O motivo é que, quando o trem se aproxima, o comprimento das ondas sonoras diminui em relação ao observador, o que faz com que o som se torne mais agudo; quando o trem se afasta, o comprimento das ondas sonoras aumenta e o som fica mais grave.O mesmo efeito ocorre com a luz. Quando uma fonte de luz se aproxima suficientemente depressa de um observador, este a receberá com menor comprimento de onda; o contrário acontece quando a fonte se afasta. No primeiro caso, o espectro da luz apresenta um desvio para o azul; no segundo, para o vermelho.
Viagem ao início do tempo
Novos instrumentos, em terra e no espaço, abrem uma inédita janela para o primeiro bilhão de anos da história do universo. A luz que começa a chegar desses ermos, depois de varrer a imensidão do espaço, esboça épicos momentos da criação dos mundos.
No início deste ano, após longo e exaustivo trabalho, o astrônomo inglês Richard McMahon, da Universidade de Cambridge, Inglaterra, concluiu uma busca que se poderia, sem nenhum exagero, qualificar de monumental. Seu objetivo era bater as mais remotas fronteiras do espaço visível e selecionar, entre nada menos que 25 milhões de objetos galáxias, a maioria , aqueles que pudessem ser classificados como quasares. Tais personagens cintilam a grandes distâncias como esfínges cósmicas, já que, até onde se pode ver, são pouco mais extensos que o sistema solar, mas emitem mais energia que bilhões de estrelas em conjunto.
McMahon, sem dúvida, encontrou o que estava procurando: identificou nove quasares recordistas em distância, e um deles, denominado BR 1202-07 é o mais longínquo já visto. Tanto que sua luz demorou 12,1 bilhões de anos para alcançar a Terra, ou seja, quando ela iniciou sua viagem, o universo era um menino de 900 milhões de anos-somente 7% de sua idade atual, avaliada em 13 bilhões de anos. Não é difícil perceber o valor de um raio que em sua rota iluminou várias regiões do cosmo e armazenou valiosas informações a seu respeito. Não é por esse motivo, no entanto, que a proeza provoca espectativa e excitação, e sim por seu significado simbólico: afinal, o primeiro bilhão de anos da história do universo nunca havia sido observado até hoje nem mesmo de forma indireta por meio das equações que descrevem a evolução cósmica.
Na falta de melhor juízo, a cautelosa imagem que se faz desse período é a de um deserto absoluto. Apenas um gás composto pelos átomos mais leves e simples da natureza, o hidrogênio e o hélio encheria monotonamente o espaço em todas as direções. Suspeita se, porém, que logo será possível dar corpo, cor e movimento a esse cenário que, em vez de amorfo, se revelaria fulgurante, quase selvagem, comparado aos padrões atuais. É o que sugere o quasar recém-descoberto, que emite 25% mais energia que qualquer outro conhecido. A magnitude de sua potência só com certo esforço pode ser concebida pela mente, pois brilha com a força de 10000 galáxias do porte da Via Lácteaque contém de 100 a 200 bilhões de sóis.
Vitalidade nessa escala faz pensar que a plácida visão das estrelas em noite límpida é enganosa. Ela esconde fenômenos e corpos celestes extremamente violentos, e estes denunciam as forças responsáveis pela evolução dos astros e do Cosmo. Uma hipótese afirma, por exemplo, que os quasares não são essencialmente diferentes das galáxias, mas sim gerados por elas. Esse raciocínio pressupõe que em sua juventude as galáxias teriam um núcleo extremamente denso, repleto de estrelas, radiação e gases dispersos, em alta temperatura. A ponto de em seu centro formar se um monumental buraco negro, ou seja, uma região onde a densidade da matéria tende ao infinito e adquire força suficiente para devorar estrelas próximas. Como compensação, o monstro ejeta para o espaço um vendaval de energia.
Estima-se que o quasar BR 1202-07 abriga um buraco negro de massa 10 bilhões de vezes maior que a do Sol, capaz de sorver o lauto banquete de 100 estrelas por ano. Assim se explicaria o jorro de energia que o torna visível a incomensurável distancia. Este ano, obteve-se a primeira evidência direta de um quasar escondido no núcleo de uma radiogaláxia, a Cygnus A, assim denominada porque emite a maior parte de sua energia em ondas de rádio, forma de energia eletromagnética, como a luz. Embora muito ativa, a Cygnus A tem grande extensão no céupor isso não se assemelha aos quasares, que aparecem nos telescópios como um ponto de luz.
Ela também está perto da Via Láctea, 750 milhões de anos-luz (1 ano-luz mede cerca de 10 trilhões de quilômetros); em comparação, 0 BR 1202-07 está a 12,1 bilhões de anos-luz). No seu coração, porém, brilha um poderoso foco de energia, como se verificou por meio dos raios infravermelhos a radiação de calor que, ao contrário da luz, atravessa com certa facilidade a poeira cósmica. Esse é o motivo porque não se vêem quasares em galáxias do tipo da Cygnus A vistas de perfil, elas expõem aos telescópios um espesso disco de estrelas, gases e poeira e não o seu núcleo.
Aquilo que se chama de quasares, por outro lado, seriam galáxias vistas de frente: assim, expõem seu núcleos isto é, o centro do disco. A energia do quasar, nesse caso, obscurece as estrelas à volta. Esse é o raciocínio do astrônomo americano George Djorgovski, do Instituto de Tecnologia da Califórnia, chefe da equipe que analisou a Cygnus A. "A interpretação lógica é que encontramos um quasar sepultado, que não podíamos ver por meios ópticos." A própria Via Láctea pode ter sido habitada por um quasar, mas, por ser idosa, esgotou a provisão de estrelas próximas que alimentavam a fera. Mesmo velho e desdentado,. porém, ele ainda agita o centro da galáxia, situado na direção da Constelação de Sagitário. a 30 000 anos-luz do Sol. Entrevê-se aí forte turbulência em massas de gases, possivelmente sob a batuta de um buraco negro ancião.
Se os quasares forem realmente o núcleo ativo das galáxias, estas já habitariam o Universo desde o seu primeiro bilhão de anos de vida. Ou ainda mais cedo, pois os quasares mais distantes não parecem jovens: haviam começado a brilhar algum tempo antes de serem avistados. "Se pudéssemos determinar em que época foram acionados, saberíamos quando as galáxias se formaram?, aposta o astrônomo americano Wallace Sargent, do Instituto de Tecnologia da Califórnia. Um dado animador é que, de acordo com alguns cientistas, as barreiras do tempo serão quebradas cada vez com maior freqüência. De fato, mal se anunciou a descoberta do BR 1202-07, surgiu outro recordista, cuja luz teria sido emitida quando o Universo tinha 870 milhões de anos.. Assim, dentro de um ano se poderá chegar ao período em que o Cosmo tinha cerca de 350 milhões de anos. Mas será difícil superar essa barreira.
"Nesse limite, até os mais brilhantes raios de luz serão apagados por incontáveis nuvens de poeira e gás intergalácticos", explica McMahon. Ele calcula que ao longo das eras a luz do quasar BR 1202-07 teria atravessado mais de 1 000 nuvens como essas muito rarefeitas, geralmente, mas tão extensas que às vezes milhares de galáxias aninham-se em uma delas. Trata-se de um dos componentes da chamada matéria escura, cuja existência tornou-se um dos mais importantes fatos estabelecidos nos últimos anos. Supõe-se que apenas 10% da massa do Universo está na forma de objetos brilhantes como as estrelas: os 90% restantes não emitem luz e são praticamente invisíveis. Parte substancial da matéria escura pode ser formada por neutrinos, partículas subatômicas que transportam muito pouca energia e por isso são difíceis de detectar. Seja como for, essa massa invisível deixa sinais claros de sua presença.
Como exerce força gravitacional extra, faz com que as estrelas de uma galáxia, por exemplo, girem mais rápido do que girariam, caso a única matéria existente fossem os corpos brilhantes. Assim, qualquer teoria sobre a evolução do Cosmo terá de levar em conta as ações desse lado negro da matéria, até agora despercebida nos assombrosos vazios entre as galáxias. Mais do que isso, a mais bem cotada teoria atual considera que no interior da matéria escura surgiram as sementesdas das galáxias. O raciocínio básico, bastante convincente, supõe que o Cosmo era realmente muito monótonos no princípio. Embora distribuídos por igual em toda parte, seria inevitável que alguns átomos se aproximassem, ainda que por breves momentos.
Mas, quando se forma uma pequena aglomeração de matériauma semente, a força gravitacional cresce, nesse local, atraindo novos átomos das vizinhanças. Cria-se, assim, uma reação em cadeia: quanto mais se amplia a aglomeração, maior é sua força de atração e mais ela cresce. Viria daí a grande intimidade observada entre matéria escura e brilhante uma envolvendo a outra em grandes halos. Foi o que viu, de maneira espetacular, há alguns meses, o astrônomo Anthony Tyson, pesquisador da empresa americana AT&T. Ele verificou que a luz de uma galáxia distante era fortemente encurvada ao passar perto de um aglomeradodiversas galáxias girando em torno de um centro comum, como os planetas à volta do Sol.
A massa luminosa, por si só, não poderia forçar a luz a curvar-se tanto quanto se observava e Tyson deduziu: o que estava "vendo" era a matéria escura. "Era como se a matéria luminosa e a escura tivessem conhecimento uma da outra" compara o astrônomo. Justamente como se poderia esperar no caso de as duas formas de matéria terem evoluído juntas ao longo de bilhões de anos, elas gravitavam em perfeita sintonia à volta de um centro comum. Novos instrumentos podem fornecer chaves para dirimir dúvidas persistentes, e nesse caso, o vento sopra a favor dos pesquisadores. Já no final de 1991 começa a funcionar o maior telescópio do mundo batizado de Keck e situado no Mauna Kea, um vulcão adormecido do Havaí.
Com 36 lentes de 2 metros de diâmetro, ele promete esmiuçar aquilo que, até agora, apenas se entrevê. "Junto com outros instrumentos ele vai localizar, identificar e estudar a época de formação das primeiras estrelas e galáxias", diz o pesquisador Frederick Gillet, dos Observatórios Nacionais de Astronomia Óptica. Estados Unidos. Há grande expectativa, também, com relação a três formidáveis satélites-telescópios que, apesar dos problemas com o Hubble, os americanos pretendem colocar em órbita até o final da década. O primeiro deles, designado pela sigla GRO, foi lançado no último mês de abril com a meta de elaborar a mais ampla investigação celeste na faixa dos raios gama, a mais energética forma de radiação eletromagnética (uma partícula, ou fóton, de raio gama transporta 10 000 vezes mais energia que uma partícula de luz).
Em 1997 está programado para voar o AXAF, capaz de enxergar fótons de raios X, um pouco menos energéticos que os raios gama, e em 1999 deve subir o SIRTF, especializado em captar radiação de calor. Nessa data também ficará pronto o Telescópio Muito Grande, que os europeus estão construindo no alto dos Andes chilenos. Ele deve o nome às quatro lentes de 8 metros cada uma, capazes de torná-lo mais potente que o Keck. A simples listagem dos instrumentos impressiona os mais experientes pesquisadores, como o americano John Bahcall, do Instituto de Pesquisa Avançada de Princeton. "A Astronomia terá uma década de novidades chocantes" admira-se Bahcall.
Poucos cientistas, atualmente, arriscam-se a dar traços precisos aos esboços que fazem sobre a origem das galáxias. Exemplo disso é um livro recém-escrito (ainda não editado em português) pelo teórico americano Tony Rothman, da Universidade Harvard. Rothman faz curiosa descrição do primeiro bilhão de anos da história cósmica. "Nessa era desbotada, os planetas ainda não tinham se formado e talvez nem mesmo as primeiras estrelas e galáxias. Os mais antigos quasares datam desse período, mas os astrônomos não esperam encontrar muitos deles em tempo mais recuado", resume o cientista. A expectativa, agora, inverteu-se. Aos poucos, reduz-se a imensidão que ainda separa o início dos tempos e os homens, que, 13 bilhões de anos mais tarde, se encantam com a perspectiva de reconstituir o mundo onde nasceram.
Corrida para o passado
A chave para se calcular a idade do Universo surgiu com o astrônomo americano Edwin Hubble, que, em 1929, percebeu-não sem espanto que todas as galáxias do céu estavam se distanciando da Terra. Era como se todo o Cosmo estivesse se esticando e a conseqüência disso irrompeu como um clarão na mente dos cientistas. Se estavam se afastando, as galáxias deviam ter estado juntas, em algum momento do passadodesde então identificado com o início dos tempos. Mais do que isso, podia-se calcular o tempo que duas galáxias haviam demorado para afastar-se uma da outra: se dois corpos estão a 10 quilômetros um do outro e se afastam a 5 quilômetros por hora., conclui-se que estiveram lado a lado duas horas antes.
Não é fácil fazer essa conta ao lidar com o conjunto do Universo. Para se ter uma idéia, as galáxias mais distantes têm de se afastar mais velozmente, já que, para chegar à distancia em que estão, não podem ter demorado mais tempo que uma galáxia próxima, mais lerda. É justamente por isso que, se o tempo andasse para trás, todas as galáxias chegariam, ao mesmo tempo, a um mesmo ponto do espaço. Outra complicação: além de acompanhar o esticamento geral do Universo, as galáxias também se atraem sob ação da gravidade. Por esse motivo, muitas galáxias próximas, em lenta expansão, estão se aproximando, e não se afastando da Terra. Por outro lado, é difícil avaliar a distancia das galáxias muito afastadas.
Todas essas dificuldades, embora não impeçam seu cálculo, introduzem grande incerteza na idade do Universo: os cientistas, muitas vezes, assinalam apenas que ela se situa entre 10 bilhões e 20 bilhões de anos. As mais aprimoradas estimativas apontam para o tempo de 13 bilhões de anos, mas ainda se trata de um número provável. Não é definitivo.
Nenhum comentário:
Postar um comentário